Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 30(2): 153-166, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38623162

RESUMO

Leguminosae is one of the three largest families of angiosperms after Compositae and Orchidaceae. It is widely distributed and grows in a variety of environments, including plains, mountains, deserts, forests, grasslands, and even waters where almost all legumes can be found. It is one of the most important sources of starch, protein and oil in the food of mankind and also an important source of high-quality forage material for animals, which has important economic significance. In our study, the codon usage patterns and variation sources of the chloroplast genome of nine important forage legumes were systematically analyzed. Meanwhile, we also constructed a phylogenetic tree based on the whole chloroplast genomes and protein coding sequences of these nine forage legumes. Our results showed that the chloroplast genomes of nine forage legumes end with A/T bases, and seven identical high-frequency (HF) codons were detected among the nine forage legumes. ENC-GC3s mapping, PR2 analysis, and neutral analysis showed that the codon bias of nine forage legumes was influenced by many factors, among which natural selection was the main influencing factor. The codon usage frequency showed that the Nicotiana tabacum and Saccharomyces cerevisiae can be considered as receptors for the exogenous expression of chloroplast genes of these nine forage legumes. The phylogenetic relationships of the chloroplast genomes and protein coding genes were highly similar, and the nine forage legumes were divided into three major clades. Among the clades Melilotus officinalis was more closely related to Medicago sativa, and Galega officinalis was more closely related to Galega orientalis. This study provides a scientific basis for the molecular markers research, species identification and phylogenetic studies of forage legumes. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01421-0.

2.
Nanoscale ; 16(11): 5776-5785, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38415719

RESUMO

Enzyme-mimetic photocatalysis has been attracting much attention in bionic research, in which carbon monoxide dehydrogenase (CODH) is a suitable prototype for simulation to meet environmental and energy needs. In this study, we utilized the structural memory effect of layered double hydroxides (LDHs) to build inorganic intergrowth bulk heterojunctions (IIBHs) NiS/FeS@MgFe-LDHs via a pyrolytic topological vulcanization (PTV) method that imitated active C-clusters [Ni-4Fe-4S] in CODH. Enzyme mimicry was evaluated in terms of the microstructure and catalytic reaction site. The similarity between the microstructure of NiS/FeS@MgFe-LDHs and the CODH active group was demonstrated through XRD, XAFS and other characterisations. Subsequently, the obtained in situ irradiated X-ray photoelectron spectra and transient absorption spectra indicated the photogenerated electron transfer of the IIBH, wherein electrons finally accumulated in the conduction band of the NiS domain for the photocatalytic CO2 reduction reaction, which was similar to that of C-clusters [Ni-4Fe-4S] in which the Ni2+ ion was the reactive site. As a result, NiS/FeS@MgFe-LDHs achieved a high yield of CO at a rate of 2151.974 µmol g-1 h-1, which was 39.8 and 9.7 times more than that of NiMgFe-LDHs and NiMgFe-MMO, respectively. The study offers an innovative design route for developing IIBHs, providing novel opportunities for enzyme-mimetic photocatalysis.

3.
Br J Clin Pharmacol ; 90(2): 516-527, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37771051

RESUMO

AIMS: Our aim was to determine the absolute bioavailability, mass balance, metabolism and excretion of soticlestat (TAK-935). METHODS: An open-label, two-period, single-site, phase 1 study was conducted in six healthy men. In Period 1, a single 300 mg dose of soticlestat was administered orally, followed by a 15-min intravenous infusion of [14 C]soticlestat 50 µg (~1 µCi) 10 min later. In Period 2, a single 300 mg dose (~100 µCi) of [14 C]soticlestat in solution was administered orally. Samples were collected, analysed for radioactivity or unchanged soticlestat, and profiled for metabolites. RESULTS: In Period 1, soticlestat had an absolute bioavailability of 12.6% (90% confidence interval, 7.81-20.23%). In Period 2, there was near-complete recovery of total radioactivity (TRA) following a 300 mg dose of [14 C]soticlestat: urine, 94.8% (standard deviation [SD], 1.35%); faeces, 2.7% (SD, 1.67%). Of TRA, 0.1% (SD, 0.09%) and 0.6% (SD, 0.21%) were recovered as soticlestat and metabolite M-I in urine, respectively. In plasma, soticlestat and M-I reached geometric mean maximum observed concentrations of 1352 ng/mL (geometric percent coefficient of variation [gCV%], 61.3) and 253.2 ng/mL (gCV%, 44.1) after 25 min and declined with mean terminal half-lives (SD) of 5.7 (2.90) and 2.0 (0.15) h, respectively. Soticlestat represented 4.9% of TRA in plasma. Soticlestat was rapidly eliminated primarily via O-glucuronidation to metabolite M3, which was the dominant species in plasma (92.6%) and urine (86%). CONCLUSIONS: This study indicates that soticlestat and its metabolites are rapidly cleared and eliminated, lowering the risk of dose accumulation from repeated dosing and supporting further investigation of soticlestat.


Assuntos
Piperidinas , Piridinas , Humanos , Masculino , Administração Oral , Disponibilidade Biológica , Colesterol 24-Hidroxilase , Voluntários Saudáveis
4.
Eur J Drug Metab Pharmacokinet ; 47(3): 371-386, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35157234

RESUMO

BACKGROUND AND OBJECTIVE: Felcisetrag (previously TAK-954 or TD-8954) is a highly selective and potent 5-HT4 receptor agonist in clinical development for prophylaxis and treatment of postoperative gastrointestinal dysfunction (POGD). The rat, dog, and human absorption, distribution, metabolism, and excretion (ADME) properties of felcisetrag were investigated. METHODS: The metabolism and victim and perpetrator drug interaction potentials towards cytochrome P450s (CYP) and transporters were determined using in vitro models. The excretion, metabolite profile, and pharmacokinetics were determined during unlabeled and radiolabeled ADME studies in rat and dog for comparison with human. Due to a low clinical dose (0.5 mg) and radioactivity (~ 1.5 µCi), a combination of liquid scintillation counting and accelerator mass spectrometry was used for analysis of samples in this study. RESULTS: The ADME properties, including metabolite profile, for felcisetrag are generally conserved across species. Felcisetrag is primarily cleared through renal excretion (0.443) and metabolism in humans (0.420), with intact parent as the predominant species in circulation. There are multiple metabolites, each representing < 10% of the circulating radioactivity, confirming no metabolites in safety testing (MIST) liabilities. Metabolites were also detected in animals. The potential for major CYP- and transporter-based drug-drug interaction (DDI) of felcisetrag as a victim or perpetrator is considered to be low. CONCLUSIONS: Felcisetrag is primarily cleared in humans through renal excretion. Although the metabolism of felcisetrag is primarily through CYP3A, the potential for clinically relevant DDI as a victim is significantly reduced as metabolism plays a minor role in the overall clearance.


Assuntos
Sistema Enzimático do Citocromo P-450 , Serotonina , Animais , Cães , Interações Medicamentosas , Humanos , Ratos
5.
PeerJ ; 9: e12356, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34760374

RESUMO

BACKGROUND: Radioresistance is still the major cause of radiotherapy failure and poor prognosis in patients with non-small cell lung cancer (NSCLC). Apatinib (AP) is a highly selective inhibitor of vascular endothelial growth factor receptor 2 (VEGFR2). Whether and how AP affects radiosensitivity in NSCLC remains unknown. The present study aimed to explore the radiosensitization effect of AP in NSCLC and its underlying mechanism as a radiosensitizer. METHODS: The NSCLC cell lines A549 and LK2 were treated with AP, ionizing radiation (IR), or both AP and IR. Expression of VEGFR2 was analyzed by western blot and RT-PCR. Cell proliferation was measured using CCK-8 and colony formation assays. Apoptosis and cell cycle distribution in NSCLC cells were analyzed by flow cytometry. Nuclear phosphorylated histone H2AX foci immunofluorescence staining was performed to evaluate the efficacy of the combination treatment. Western blot was used to explore the potential mechanisms of action. RESULTS: AP inhibited cell proliferation in a dose- and time-dependent manner. Flow cytometry analysis indicated that AP significantly increased radiation-induced apoptosis. Colony formation assays revealed that AP enhanced the radiosensitivity of NSCLC cells. AP strongly restored radiosensitivity by increasing IR-induced G2/M phase arrest. AP effectively inhibited repair of radiation-induced DNA double-strand breaks. Western blot analysis showed that AP enhanced radiosensitivity by downregulating AKT and extracellular signal-regulated kinase (ERK) signaling. CONCLUSION: Our findings suggest that AP may enhance radiosensitivity in NSCLC cells by blocking AKT and ERK signaling. Therefore, AP may be a potential clinical radiotherapy synergist and a novel small-molecule radiosensitizer in NSCLC. Our study fills a gap in the field of anti-angiogenic drugs and radiosensitivity.

6.
Math Biosci Eng ; 18(5): 5921-5942, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34517516

RESUMO

BACKGROUND: Pancreatic adenocarcinoma (PAAD) is one of the most common malignant tumors with high mortality rates and a poor prognosis. There is an urgent need to determine the molecular mechanism of PAAD tumorigenesis and identify promising biomarkers for the diagnosis and targeted therapy of the disease. METHODS: Three GEO datasets (GSE62165, GSE15471 and GSE62452) were analyzed to obtain differentially expressed genes (DEGs). The PPI networks and hub genes were identified through the STRING database and MCODE plugin in Cytoscape software. GO and KEGG enrichment pathways were analyzed by the DAVID database. The GEPIA database was utilized to estimate the prognostic value of hub genes. Furthermore, the roles of MMP14 and COL12A1 in immune infiltration and tumor-immune interaction and their biological functions in PAAD were explored by TIMER, TISIDB, GeneMANIA, Metascape and GSEA. RESULTS: A total of 209 common DEGs in the three datasets were obtained. GO function analysis showed that the 209 DEGs were significantly enriched in calcium ion binding, serine-type endopeptidase activity, integrin binding, extracellular matrix structural constituent and collagen binding. KEGG pathway analysis showed that DEGs were mainly enriched in focal adhesion, protein digestion and absorption and ECM-receptor interaction. The 14 genes with the highest degree of connectivity were defined as the hub genes of PAAD development. GEPIA revealed that PAAD patients with upregulated MMP14 and COL12A1 expression had poor prognoses. In addition, TIMER analysis revealed that MMP14 and COL12A1 were closely associated with the infiltration levels of macrophages, neutrophils and dendritic cells in PAAD. TISIDB revealed that MMP14 was strongly positively correlated with CD276, TNFSF4, CD70 and TNFSF9, while COL12A1 was strongly positively correlated with TNFSF4, CD276, ENTPD1 and CD70. GSEA revealed that MMP14 and COL12A1 were significantly enriched in epithelial mesenchymal transition, extracellular matrix receptor interaction, apical junction, and focal adhesion in PAAD development. CONCLUSIONS: Our study revealed that overexpression of MMP14 and COL12A1 is significantly correlated with PAAD patient poor prognosis. MMP14 and COL12A1 participate in regulating tumor immune interactions and might become promising biomarkers for PAAD.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Adenocarcinoma/genética , Antígenos B7 , Biomarcadores Tumorais/genética , Colágeno Tipo XII/genética , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Metaloproteinase 14 da Matriz/genética , Ligante OX40 , Neoplasias Pancreáticas/genética , Mapas de Interação de Proteínas
7.
Nanoscale ; 13(30): 12938-12950, 2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34477777

RESUMO

Herein, a distinctive dual-carbon-confined nanoarchitecture, composed of an inner highly conductive, robust carbon nanotube (CNT) support and outer well-designed porous carbon (PC) coating, was demonstrated to efficiently improve the electrochemical properties of CoO nanoparticles for the first time, and the CoO nanoparticles were confined between the CNTs and porous carbon. The well-designed porous carbon coating showed significant superiority compared to common non-porous carbon coatings, due to its distinctive characteristics such as high flexibility, rich free space and open tunnel-like structure. Therefore, the synergistic effects of the CNT core and the porous carbon sheath endowed the CoO-based composite (CNTs@CoO@PC) with improved electrochemical reaction kinetics, large pseudocapacitive contribution and superior structural stability. As a result, the CNTs@CoO@PC showed outstanding performance with 1090, 571 and 242 mA h g-1 at 200, 1000 and 5000 mA g-1 after 300, 600 and 1000 cycles, respectively. Furthermore, this strategy may be used to improve other metal oxide anode materials for lithium storage.

8.
J Colloid Interface Sci ; 602: 789-798, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34198142

RESUMO

In order to reduce the negative impact of the extra carbon coating on the electrochemical properties of the commonly sandwiched carbon nanotubes@tin dioxide@carbon (CNT@SnO2@C) composites, the external C coating has been designed as a porous carbon in this work. The well-designed porous carbon coating offers an attractive advantage compared to the common carbon coatings, namely, it can not only better mitigate the volumetric variation of SnO2 by means of its spongy structure with better flexibility and rich free space, but also accelerate the lithium-ions diffusion by virtue of its open tunnel-like architecture. For this reason, this composite prepared here shows outstanding electrochemical performance stemming from the cooperative effect of inner CNT supporting and externally porous carbon coating, displaying 819.3 and 576.0 mAh g-1 at 200 and even 1000 mA g-1 after even 500 cycles, respectively. This surface engineering strategy may be valuable for enhancing the cyclical durability of other metal oxides with higher theoretical specific capacities.

9.
Int J Gen Med ; 14: 2677-2694, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34188523

RESUMO

BACKGROUND: Pancreatic adenocarcinoma (PAAD) is a deadly tumor with a high recurrence rate and poor prognosis. Keratin 7 (KRT7) is a member of the keratin gene family that is involved in the regulation of cell growth, migration and apoptosis in many cancers. However, the role of KRT7 and its biological functions in PAAD remain unclear. We systemically analyzed the expression and clinical values of KRT7 in PAAD. METHODS: The Gene Expression Profiling Interactive Analysis (GEPIA), Oncomine and Human Protein Atlas (HPA) databases were used to analyze the mRNA and protein expression of KRT7 in PAAD. The prognosis and subgroup analysis of KRT7 in PAAD patients was performed using the GEPIA, PROGgeneV2 and UALCAN databases. Later, the correlation between KRT7 expression and tumor immune molecules in PAAD was evaluated using the Immune Cell Abundance Identifier (ImmuCellAI) and TISIDB databases. Finally, the functional enrichment pathway of KRT7 and its coexpressed genes were analyzed by the Database for Annotation, Visualization, and Integrated Discovery (DAVID) and Metascape databases and Gene Set Enrichment Analysis (GSEA). RESULTS: The mRNA and protein expression of KRT7 was increased in PAAD tissues compared with normal tissues. High KRT7 expression was closely associated with tumor grade, TP53 mutations and poor prognosis in PAAD patients. Cox regression analysis proved that overexpressed KRT7 was an important and independent risk factor for poor overall survival (P = 0.006, HR =1.87) and disease-free survival (P = 0.019, HR =1.793) in PAAD. Additionally, KRT7 expression was significantly associated with immune infiltration of tumor immune cells and immunomodulators. Functional enrichment analyses and GSEA indicated that KRT7 might be involved in the regulation of the p53 pathway in PAAD. CONCLUSION: Overexpressed KRT7 could be a promising prognostic and therapeutic target biomarker for PAAD by bioinformatics analysis.

10.
Life Sci ; 276: 119413, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33794256

RESUMO

Sepsis is a fatal organ dysfunction resulting from a disordered host response to infection. Endothelial cells (ECs) are usually the primary targets of inflammatory mediators in sepsis; damage to ECs plays a pivotal part in vital organ failure. In recent studies, autophagy was suggested to play a critical role in the ECs injury although the mechanisms by which ECs are injured in sepsis are not well elucidated. Autophagy is a highly conserved catabolic process that includes sequestrating plasma contents and transporting cargo to lysosomes for recycling the vital substrates required for metabolism. This pathway also counteracts microbial invasion to balance and retain homeostasis, especially during sepsis. Increasing evidence indicates that autophagy is closely associated with endothelial function. The role of autophagy in sepsis may or may not be favorable depending upon conditions. In the present review, the current knowledge of autophagy in the process of sepsis and its influence on ECs was evaluated. In addition, the potential of targeting EC autophagy for clinical treatment of sepsis was discussed.


Assuntos
Autofagia , Células Endoteliais/patologia , Sepse/patologia , Animais , Humanos
11.
Int J Biol Sci ; 17(2): 635-650, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613118

RESUMO

Objectives: Radiotherapy has played a limited role in the treatment of non-small cell lung cancer (NSCLC) due to the risk of tumour radioresistance. We previously established the radioresistant non-small cell lung cancer (NSCLC) cell line H460R. In this study, we identified differentially expressed genes between these radioresistant H460R cells and their radiosensitive parent line. We further evaluated the role of a differentially expressed gene, ITGB1, in NSCLC cell radioresistance and as a potential target for improving radiosensitivity. Materials and Methods: The radiosensitivity of NSCLC cells was evaluated by flow cytometry, colony formation assays, immunofluorescence, and Western blotting. Bioinformatics assay was used to identify the effect of ITGB1 and YAP1 expression in NSCLC tissues. Results: ITGB1 mRNA and protein expression levels were higher in H460R than in the parental H460 cells. We observed lower clonogenic survival and cell viability and a higher rate of apoptosis of ITGB1-knockdown A549 and H460R cells than of wild type cells post-irradiation. Transfection with an ITGB1 short hairpin (sh) RNA enhanced radiation-induced DNA damage and G2/M phase arrest. Moreover, ITGB1 induced epithelial-mesenchymal transition (EMT) of NSCLC cells. Silencing ITGB1 suppressed the expression and intracellular translocation of Yes-associated protein 1 (YAP1), a downstream effector of ITGB1. Conclusions: ITGB1 may induce radioresistance via affecting DNA repair and YAP1-induced EMT. Taken together, our data suggest that ITGB1 is an attractive therapeutic target to overcome NSCLC cell radioresistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Integrina beta1/metabolismo , Neoplasias Pulmonares/metabolismo , Tolerância a Radiação , Proteínas de Sinalização YAP/metabolismo , Células A549 , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Reparo do DNA , Transição Epitelial-Mesenquimal , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia
12.
Life Sci ; 264: 118641, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33148420

RESUMO

Pancreatitis is an inflammatory disease of the pancreas characterized by acinar cell injury and is associated with the abnormal release of trypsin, which results in high mortality due to systemic inflammatory response syndrome (SIRS) and multiple organ dysfunction syndrome (MODS). The inflammatory response, impaired autophagic flux, endoplasmic reticulum stress (ERS) and their interactions are involved in the development of pancreatitis. Molecular hydrogen (H2) is a novel antioxidant that possesses the features of selective scavenging of oxygen free radicals and nontoxic metabolites and has been shown to be efficacious for treating infection, injury, tumors, ischemia-reperfusion organ injury, metabolic disease and several other diseases. Recent studies have found that H2 is also useful in the treatment of pancreatitis, which may be related to the mechanism of antioxidative stress, anti-inflammation, anti-apoptosis, regulation of immunity and regulation of molecular pathways. This review focuses on the pathogenesis of pancreatitis and the research progress and potential mechanisms of H2 against pancreatitis to provide theoretical bases for future research and clinical application of H2 therapy for pancreatitis.


Assuntos
Hidrogênio/uso terapêutico , Pancreatite/terapia , Animais , Antioxidantes/metabolismo , Apoptose , Autofagia/efeitos dos fármacos , Morte Celular , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Inflamação , Sistema de Sinalização das MAP Quinases , Insuficiência de Múltiplos Órgãos , Estresse Oxidativo , Pâncreas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Tripsina/química
13.
Invest New Drugs ; 39(2): 488-498, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33089874

RESUMO

Pevonedistat (TAK-924/MLN4924) is an investigational small-molecule inhibitor of the NEDD8-activating enzyme that has demonstrated preclinical and clinical activity across solid tumors and hematological malignancies. Here we report the results of a phase I trial characterizing the mass balance, pharmacokinetics, and clearance pathways of [14C]-pevonedistat in patients with advanced solid tumors (NCT03057366). In part A (n = 8), patients received a single 1-h intravenous infusion of [14C]-pevonedistat 25 mg/m2. In part B (n = 7), patients received pevonedistat 25 or 20 mg/m2 on days 1, 3, and 5 in combination with, respectively, docetaxel 75 mg/m2 or carboplatin AUC5 plus paclitaxel 175 mg/m2 on day 1 every 3 weeks. Following the single dose of [14C]-pevonedistat 25 mg/m2 in part A, there was a parallel log-linear decline in plasma and whole blood pevonedistat concentration, with systemic exposure of unchanged pevonedistat representing 41% of drug-related material (i.e., unchanged pevonedistat and its metabolites). The mean terminal half-life of pevonedistat and drug-related material in plasma was 8.4 and 15.6 h, respectively. Pevonedistat distributed preferentially in whole blood with a mean whole-blood-to-plasma ratio for pevonedistat AUC∞ of 40.8. By 1 week post dose, the mean recovery of administered radioactivity was 94% (41% in urine and 53% in feces). The pevonedistat safety profile during both study parts was consistent with previous clinical experience, with no new safety signals observed. In part B, pevonedistat in combination with docetaxel or carboplatin plus paclitaxel was generally well tolerated. ClinicalTrials.gov identifier: NCT03057366 .


Assuntos
Ciclopentanos/farmacocinética , Inibidores Enzimáticos/farmacocinética , Proteína NEDD8/antagonistas & inibidores , Pirimidinas/farmacocinética , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica , Área Sob a Curva , Ciclopentanos/uso terapêutico , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/uso terapêutico , Feminino , Meia-Vida , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/tratamento farmacológico , Pirimidinas/uso terapêutico , Compostos Radiofarmacêuticos
14.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 32(4): 504-507, 2020 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-32527363

RESUMO

Sepsis is a life-threatening systemic inflammatory response syndrome (SIRS) caused by the host's maladjustment response to infection, which eventually leads to septic shock and multiple organ failure. Pancreatic injury was found to be an important pathological change in sepsis. Autophagy is a crucial way to maintain the normal metabolism of cell substances and energy, which plays an important role in many diseases. Recent studies have found that autophagy plays a dual role in pancreatic injury in sepsis. Moderate autophagy can protect the pancreas and reduce the injury, while excessive autophagy can cause apoptosis-related autophagic cell death and aggravate the pancreatic injury. In sepsis, activated nuclear factor-κB (NF-κB) has a promoting effect on autophagy, and lysosome associated membrane protein (LAMP) degradation can result in impaired autophagy flux and aggravate pancreatic injury. The exploration of the mechanism of autophagy in pancreatic injury of sepsis will help to restore the normal autophagy function, so as to find a new target for the treatment of pancreatic injury of sepsis.


Assuntos
Autofagia , Pâncreas/lesões , Sepse , Apoptose , Humanos , Lisossomos , NF-kappa B
15.
PeerJ ; 8: e8816, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32219034

RESUMO

BACKGROUND: The nuclear factor I (NFI) is a family of transcription factors consisting of four distinct but closely related genes, NFIA, NFIB, NFIC and NFIX, which are important in the development of various tissues and organs in mammals. Recent study results have shown that NFI family may play a critical role in the progression of various human tumors and have been identified as key tumor suppressors and oncogenes for many cancers. However, the expression levels and distinctive prognostic values of the NFI family remain poorly explored in most cancers. MATERIALS AND METHODS: In the present study, the differences in mRNA expression of the NFI family in various cancers were investigated using the Oncomine and TCGA databases, and the mRNA expression, genetic alteration and DNA methylation of the NFI family members in various cancers were examined using cBioPortal for Cancer Genomics. In addition, the prognostic significance of the NFI family was assessed in multiple cancers using the Kaplan-Meier plotter (KM plotter) and SurvExpress databases. RESULTS: The mRNA expression levels in the NFI family were significantly downregulated in most cancers compared with normal tissues and DNA hypermethylation might downregulate the NFI family expression. Although NFIX expression was not downregulated in kidney, colorectal and prostate cancers. Furthermore, NFIB expression was upregulated in gastric cancer. Further survival analyses based on the KM plotter and SurvExpress databases showed dysregulations of the NFI genes were significantly correlated with survival outcomes in breast, lung, and head and neck cancers. Decreased expression levels of NFIA, NFIB and NFIC were associated with poor overall survival (OS) in head and neck cancer. Low mRNA expression of NFIA and NFIB was significantly associated with OS and first progression in lung adenocarcinoma, but not in lung squamous cell carcinoma. In addition, potential correlations between NFI family members and survival outcomes were also observed in liver, esophageal, kidney and cervical cancer. CONCLUSION: The results from the present study indicated certain members of the NFI family could be promising therapeutic targets and novel prognostic biomarkers for human cancers.

16.
Drug Metab Dispos ; 48(3): 217-229, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31911485

RESUMO

Alisertib (MLN8237) is an investigational, orally available, selective aurora A kinase inhibitor in clinical development for the treatment of solid tumors and hematologic malignancies. This metabolic profiling analysis was conducted as part of a broader phase 1 study evaluating mass balance, pharmacokinetics, metabolism, and routes of excretion of alisertib following a single 35-mg dose of [14C]alisertib oral solution (∼80 µCi) in three patients with advanced malignancies. On average, 87.8% and 2.7% of the administered dose was recovered in feces and urine, respectively, for a total recovery of 90.5% by 14 days postdose. Unchanged [14C]alisertib was the predominant drug-related component in plasma, followed by O-desmethyl alisertib (M2), and alisertib acyl glucuronide (M1), which were present at 47.8%, 34.6%, and 12.0% of total plasma radioactivity. In urine, of the 2.7% of the dose excreted, unchanged [14C]alisertib was a negligible component (trace), with M1 (0.84% of dose) and glucuronide conjugate of hydroxy alisertib (M9; 0.66% of dose) representing the primary drug-related components in urine. Hydroxy alisertib (M3; 20.8% of the dose administered) and unchanged [14C]alisertib (26.3% of the dose administered) were the major drug-related components in feces. In vitro, oxidative metabolism of alisertib was primarily mediated by CYP3A. The acyl glucuronidation of alisertib was primarily mediated by uridine 5'-diphospho-glucuronosyltransferase 1A1, 1A3, and 1A8 and was stable in 0.1 M phosphate buffer and in plasma and urine. Further in vitro evaluation of alisertib and its metabolites M1 and M2 for cytochrome P450-based drug-drug interaction (DDI) showed minimal potential for perpetrating DDI with coadministered drugs. Overall, renal elimination played an insignificant role in the disposition of alisertib, and metabolites resulting from phase 1 oxidative pathways contributed to >58% of the alisertib dose recovered in urine and feces over 192 hours postdose. SIGNIFICANCE STATEMENT: This study describes the primary clearance pathways of alisertib and illustrates the value of timely conduct of human absorption, distribution, metabolism, and excretion studies in providing guidance to the clinical pharmacology development program for oncology drugs, for which a careful understanding of sources of exposure variability is crucial to inform risk management for drug-drug interactions given the generally limited therapeutic window for anticancer drugs and polypharmacy that is common in cancer patients.


Assuntos
Aurora Quinase A/metabolismo , Azepinas/metabolismo , Biotransformação/fisiologia , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Pirimidinas/metabolismo , Administração Oral , Idoso , Antineoplásicos/metabolismo , Citocromo P-450 CYP3A/metabolismo , Fezes , Feminino , Glucuronídeos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade
17.
Chemosphere ; 233: 327-335, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31176895

RESUMO

An amino-functionalized magnetic metal organic framework (MOF), Fe3O4-NH2@MIL-101(Cr), was employed for laccase immobilization for the first time. The immobilized laccase was synthesized by the adsorption and covalent binding method, thus exhibited high activity recovery, large immobilization capacity and good tolerance to low pH and high temperature conditions. The excellent stability enabled the immobilized laccase to retain 89% of its initial activity after storage for 28 days. When the ambient temperature reached 85 °C, the immobilized laccase showed 49.1% residual activity even after 6 h preservation. The stability of laccase in organic solvents such as methanol was also greatly improved. Application of the immobilized laccase for 2,4-dichlorophenol removal was also investigated. The adsorption by Fe3O4-NH2@MIL-101(Cr) contributed to a quick removal in the first hour, and the removal efficiency reached 87% eventually. When the reaction was completed, the immobilized laccase could be separated from the solution by a magnet. The results introduced a novel support for laccase immobilization, and the immobilized laccase had great potential in wastewater treatment.


Assuntos
Lacase/química , Estruturas Metalorgânicas/química , Fenóis/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Clorofenóis/química , Clorofenóis/isolamento & purificação , Estabilidade Enzimática , Enzimas Imobilizadas/química , Concentração de Íons de Hidrogênio , Magnetismo , Imãs , Metanol/química , Fenóis/química , Temperatura , Águas Residuárias , Poluentes Químicos da Água/química
18.
Biochem Biophys Res Commun ; 515(4): 558-564, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31178144

RESUMO

Radioresistance remains the most challenging issue leading to radiotherapy failure in the treatment of non-small cell lung cancer (NSCLC). The nuclear factor IA (NFIA) is associated with tumor response to treatments in many cancers, but its role in NSCLC radioresistance remains unclear. Here, we established two radioresistant NSCLC cell lines, H226R and H460R, by dose-gradient irradiation to investigate the function of NFIA in NSCLC radioresistance. The results showed a dramatically reduced expression of NFIA in radioresistant cells accompanied with elevated phosphorylation of AKT and ERK, when compared with their parental cells. Overexpression of NFIA restored the sensitivity of radioresistant cells to radiation through increased ionizing radiation (IR)-induced apoptosis and DNA damage by downregulating p-AKT and p-ERK, whereas knockdown of NFIA promoted radioresistance of the parental cells. Our findings suggested that NFIA enhanced cell radiosensitivity by downregulating p-AKT and p-ERK in NSCLC. Our study fills a gap in the field of NFIA and radioresistance, and establishes a mechanistic foundation to improve radiotherapy efficiency in NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neoplasias Pulmonares/metabolismo , Fatores de Transcrição NFI/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tolerância a Radiação , Apoptose , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , Reparo do DNA , Relação Dose-Resposta à Radiação , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Aceleradores de Partículas , Fosforilação , Radiação Ionizante , Transdução de Sinais , Raios X
19.
Invest New Drugs ; 37(4): 666-673, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30397836

RESUMO

Aims This two-part, phase I study evaluated the mass balance, excretion, pharmacokinetics and safety of the investigational aurora A kinase inhibitor, alisertib, in three patients with advanced malignancies. Methods Part A; patients received a single 35-mg dose of [14C]-alisertib oral solution (~80 µCi total radioactivity [TRA]). Serial blood, urine, and fecal samples were collected up to 336 h post-dose for alisertib mass balance and pharmacokinetics in plasma and urine by liquid chromatography-tandem mass spectrometry, and mass balance/recovery of [14C]-radioactivity in urine and feces by liquid scintillation counting. Part B; patients received non-radiolabeled alisertib 50 mg as enteric-coated tablets twice-daily for 7 days in 21-day cycles. Results In part A, absorption was fast (median plasma Tmax, 1 h) for alisertib and TRA. Mean plasma t1/2 for alisertib and TRA were 23.4 and 42.0 h, respectively. Mean plasma alisertib/TRA AUC0-inf ratio was 0.45, indicating presence of alisertib metabolites in circulation. Mean TRA blood/plasma AUC0-last ratio was 0.60, indicating preferential distribution of drug-related material in plasma. On average, 87.8% and 2.7% of administered radioactivity was recovered in feces and urine, respectively (total recovery, 90.5% by 14 days post-dose). In part B, patients received a median 3 cycles of alisertib. The most common any-grade adverse events were fatigue and alopecia. Conclusions Findings suggest that alisertib is eliminated mainly via feces, consistent with hepatic metabolism and biliary excretion of drug-related material. Further investigation of alisertib pharmacokinetics in patients with moderate-severe hepatic impairment is warranted to inform dosing recommendations in these patient populations.


Assuntos
Antineoplásicos/farmacocinética , Aurora Quinase A/antagonistas & inibidores , Azepinas/farmacocinética , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Pirimidinas/farmacocinética , Administração Oral , Idoso , Antineoplásicos/efeitos adversos , Antineoplásicos/sangue , Antineoplásicos/urina , Azepinas/efeitos adversos , Azepinas/sangue , Azepinas/urina , Fezes/química , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/sangue , Inibidores de Proteínas Quinases/urina , Pirimidinas/efeitos adversos , Pirimidinas/sangue , Pirimidinas/urina
20.
Xenobiotica ; 48(5): 467-477, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28485193

RESUMO

1. Breast cancer resistance protein (BCRP) plays an important role in drug absorption, distribution and excretion. It is challenging to evaluate BCRP functions in preclinical models because commonly used BCRP inhibitors are nonspecific or unstable in animal plasma. 2. In this work, in vitro absorption, distribution, metabolism and elimination (ADME) assays and pharmacokinetic (PK) experiments in Bcrp knockout (KO) (Abcg2-/-) and wild-type (WT) FVB mice and Wistar rats were conducted to characterize the preclinical properties of a novel selective BCRP inhibitor (ML753286, a Ko143 analog). 3. ML753286 is a potent inhibitor for BCRP, but not for P-glycoprotein (P-gp), organic anion-transporting polypeptide (OATP) or major cytochrome P450s (CYPs). It has high permeability, but is not an efflux transporter substrate. ML753286 has low to medium clearance in rodent and human liver S9 fractions, and is stable in plasma cross species. Bcrp inhibition affects oral absorption and clearance of sulfasalazine in rodents. A single dose of ML753286 at 50-300 mg/kg orally, and at 20 mg/kg intravenously or 25 mg/kg orally inhibits Bcrp functions in mice and rats, respectively. 4. These findings confirm that ML753286 is a useful selective inhibitor to evaluate BCRP/Bcrp activity in vitro and in rodent model systems.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Absorção Fisiológica , Neoplasias da Mama/tratamento farmacológico , Dicetopiperazinas/farmacocinética , Dicetopiperazinas/uso terapêutico , Proteínas de Neoplasias/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Células CACO-2 , Permeabilidade da Membrana Celular/efeitos dos fármacos , Dicetopiperazinas/sangue , Dicetopiperazinas/química , Cães , Feminino , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Macaca fascicularis , Masculino , Camundongos Knockout , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Proteínas de Neoplasias/metabolismo , Ratos , Sulfassalazina/farmacologia , Sulfassalazina/uso terapêutico , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...